research papers

Acta Crystallographica Section D Biological Crystallography

ISSN 0907-4449

Tian-Huey Lu,^a* Kaliyamoorthy Panneerselvam,^a Yen-Chywan Liaw,^b Pei Kan^c and Chau-Jen Lee^c

^aDepartment of Physics, National Tsing-Hua University, Hsinchu 30043, Taiwan, ^bCrystallography Laboratory, Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, and ^cDepartment of Chemical Engineering, National Tsing-Hua University, Hsinchu 30043, Taiwan

Correspondence e-mail: thlu@phys.nthu.edu.tw

To investigate a potential candidate material for making artificial red blood cells to supplement blood transfusion, the X-ray structure of porcine haemoglobin at 1.8 Å resolution was determined as part of research towards synthesizing human blood. Porcine haemoglobin was crystallized by the vapor-diffusion method, producing crystals of dimensions 0.3-0.5 mm after successive seeding. The crystals belong to the orthorhombic space group $P2_12_12_1$, with unit-cell parameters a = 68.10, b = 72.27, c = 114.85 Å. The initial phase was determined by the molecular-replacement method, using human oxyhaemoglobin as a model. The final R factor was 21.1% for 36 820 reflections after validation of 574 water molecules. The r.m.s. deviations of bond lengths, angles, torsion angles and improper angles from their ideal values are 0.017 Å, 3.0, 20.6 and 1.8° , respectively. The average B factor is 33.63 \AA^2 for the haemoglobin molecule and 50.53 \AA^2 for the water molecules. The structure could be superimposed on a 2.8 Å resolution structure with an r.m.s. difference of 0.59 Å in main-chain atomic positions and 1.27 Å in side-chain atomic positions. Porcine and human haemoglobins are compared. A tentative model for artificial blood is proposed based on the complementarity relationship of the surface charges between haemoglobin and the surrounding cell membrane.

Structure determination of porcine haemoglobin

1. Introduction

Haemoglobin (Hb) based blood substitutes, made of natural oxygen-carrier proteins which are present in red blood cells and are responsible for the transport of oxygen and partly carbon dioxide in vivo, fit the demands of human transfusion excellently (Vandegriff & Winslow, 1991). To avoid the transmission of human viruses contaminating outdated blood, animal and recombinant Hbs are increasingly being considered as possible sources. Therefore, Lee et al. (1992) have attempted to develop porcine Hb-based blood substitutes, as there is an abundant porcine market in Asia. The results obtained indicated the potential of the novel material for application in medical treatment (Lee et al., 1992; Kan & Lee, 1994; Wang et al., 1996). However, immunological problems of xenogenic infusion and the delicate regulation of oxygen capacity of porcine Hb retarded further clinical applications. Fundamental research regarding the molecular structure and function of porcine Hb is needed in order to work out a safe and effective modification in order to proceed with porcine Hb-based blood substitutes.

The allosteric properties and oxygen-transport characteristics of haemoglobin have attracted considerable study. Many papers have been published on the elucidation of the structure-function relationships of haemoglobins (Bolton & Received 18 January 1999 Accepted 5 January 2000

This paper is dedicated to the memory of the late Professor Chau-Jen Lee.

PDB Reference: porcine haemoglobin, 1qpw.

 \bigcirc 2000 International Union of Crystallography Printed in Denmark – all rights reserved Perutz, 1970; Frier & Perutz, 1977; Ladner et al., 1977; Braunitzer et al., 1978; Perutz, 1978; Feola et al., 1983; Shaanan, 1983; Fermi et al., 1984, 1992; Ackers & Smith, 1987; Kleinschmidt & Sgouros, 1987; Ippolito et al., 1990; Ryan et al., 1990; Waller & Liddington, 1990; Wireko & Abraham, 1991; Camardella et al., 1992; Coghlan et al., 1992; Kolatkar et al., 1992; Silva et al., 1992; Yamauchi et al., 1992; Perutz et al., 1993; Richard et al., 1993; Braden et al., 1994; Borgstahl et al., 1994a,b; Condon & Royer, 1994; Moulton et al., 1994; Katz et al., 1994; Osawa et al., 1994; Rizzi et al., 1994; Royer, 1994; Clement et al., 1995; Kavanaugh et al., 1995; Mitchell, Ernst & Hackert, 1995; Mitchell, Ernst, Wu et al., 1995; Pellegrini et al., 1995; Royer et al., 1995; Yang et al., 1995; Pechik et al., 1996; Paoli et al., 1996; Zhang et al., 1996).

We initiated the three-dimensional structure determination of procine haemoglobin (Hsieh *et al.*, 1992) as part of research work on this project. Purified stroma-free haemoglobin extracted from domestic porcine blood is a potential candidate material for making artificial red blood cells to supplement blood transfusion (Lee *et al.*, 1992). Although the structure of aquomet porcine haemoglobin (pHb) has been published (Katz *et al.*, 1994), this was only presented at the resolution of 2.8 Å. Several large uncertainties could not be resolved owing to the inadequate resolution. The X-ray structure determination of domestic pig haemoglobin at 1.8 Å resolution is presented here in order to resolve these structural uncertainties. Many interesting structural differences between pHb and human haemoglobin (hHb) have been discovered.

2. Materials and methods

2.1. Isolation and purification

Fresh porcine whole blood obtained from a slaughterhouse was mixed with 1/10 volume of sodium citrate to avoid blood

Figure 1

A stereoview of the $2F_o - F_c$ map of the H helix in the α_1 subunit. This shows that the model is of good quality and fits the electron-density map because of the high resolution (1.8 Å).

clotting. Red blood cells, isolated from whole blood by centrifugation (Hitachi centrifuge, Himac CR20B2) at $5000 \text{ rev min}^{-1}$ for 15 min, were washed three times with two volumes of 0.9%(w/v) saline and then haemolyzed by adding three volumes of deionized water. Subsequent centrifugation at 15 000g for 60 min yielded Hb solution free of visible cell debris. The solution was mixed with stock solutions of PEG 1500 and K₂HPO₄/NaH₂PO₄ to obtain a solution containing 12.5% PEG, 12.5% phosphate pH 10 with the addition of a small amount of NaOH. After phase separation, the top phase was withdrawn and added to NaH₂PO₄ to a final composition of 12.5% PEG, 12.5% phosphate pH 7. After mixing and phase separation, the bottom phase containing Hb was dialyzed with deionized water to remove surplus phosphate. Porcine Hb powder was obtained by lyophilization and was stored at 253 K.

2.2. Crystallization and data collection

Crystallization of porcine haemoglobin was carried out at room temperature using the vapour-diffusion method (McPherson, 1982) under conditions described previously (Blow, 1958). The purified haemoglobin was dissolved in distilled water and an 80 mg ml⁻¹ solution was prepared. 2.8 *M* phosphate solution was used as precipitant (made by mixing K₂HPO₄ and NaH₂PO₄ in the molar ratio 1.35:1.00 at pH 6.8). The crystallization conditions were first investigated by vapour diffusion in hanging drops. After small crystals were grown, the sitting-drop vapour-diffusion method was used. Large drops containing 10 µl of protein and 12 µl of 2.8 *M* phosphate solution in the reservoir. Small seed crystals were successively transferred between equilibrating protein solutions in spot plates until the crystals grew to dimensions of

0.3–0.5 mm. For X-ray analysis, a suitable crystal was mounted in a thin-walled glass capillary with a small amount of mother liquor to prevent dryness and was sealed with diffusion-pump oil.

Data were collected on an R-AXIS II imaging-plate detector system using Cu $K\alpha$ radiation generated by a Rigaku RU-300 rotating-anode generator operating at a voltage of 50 kV and a current of 80 mA. The crystal-to-detector distance was set to 100 mm. Intensity data were processed using a software package supplied by the Molecular Structure Corporation. A summary of the data-collection statistics is given in Table 1.

2.3. Structure solution and refinement

X-PLOR (Brünger, 1992) was used for the structure determination of pHb. In the investigation of the spacial orientation relationship between the $\alpha_1\beta_1$ dimer and the $\alpha_2\beta_2$ dimer of the pHb tetramer, the

Table 1

Statistics for pHb.

(a) Data collection.	
Space group	P2 ₁ 2 ₁ 2 ₁
Unit-cell parameters (Å)	a = 68.10 (1), b = 72.27 (1), c = 114.85 (2)
Resolution range (Å)	8.0-1.8 (1.88-1.8)†
No. of unique reflections	37481 (1068)†
R_{merge} \ddagger (%)	5.8

(b) Intensity statistics.

Resolution range (Å)	Observed reflections	Theoretical reflections	Completeness (%)		
8.00-3.60	6668	6976	95.6		
3.60-2.55	11495	12229	94.0		
2.55-2.08	13025	15522	83.9		
2.08-1.80	6277	18346	34.2		

† Figures given in parentheses are values for the last resolution shell. $\ddagger R_{\text{merge}} = \sum |I - \langle I \rangle| / \sum |\langle I \rangle|$, where $\langle I \rangle$ is the mean intensity of a set of equivalent reflections and the summation is over the reflections with $I/\sigma(I) > 1.0$.

self-rotation function (Rossmann & Blow, 1962) was calculated. To obtain the initial phases for the electron-density map, the molecular-replacement method was then applied using human oxyhaemoglobin (hHb; Shaanan, 1983) as the model. The atomic coordinates of the entire tetramer were modified so that all non-identical residues between hHb and pHb were substituted with glycine in the cross-rotation searches. Coordinates files for oxy-hHb were obtained from the Protein Data Bank (Bernstein et al., 1977). The amino-acid identity between hHb and pHb is 84% for the α -subunit and 86% for the β subunit from a sequence comparison. The top peak from the rotation search was 22σ above the mean, with the next highest peak at 8σ . The rotated dimers were then translated into the unit cell separately, followed by a final translation-search solution for the oriented tetramer, resulting in a conventional crystallographic R factor of 40.2%. Subsequent rigid-body refinement in X-PLOR, treating the monomer as an individual rigid body, lowered the R factor to 36.8% for data in the 8.0-3.0 Å resolution range. For this model, simulated-annealing refinement was applied and the R factor fell to 28.5%. The $2F_{a}$ $-F_c$ and $F_o - F_c$ maps were inspected for further manual intervention using the QUANTA97 program (Molecular Simulation Inc., San Diego, USA). After two rounds of major manual intervention, the structure was refined by simulatedannealing refinement using a starting temperature of 3000 K. Each of several rounds of minor manual intervention was followed by positional refinement. The R factor at this stage was 26.2%. Examining the $2F_{o} - F_{c}$ electron-density map with peak density $>3\sigma$ revealed that there was no possibility of finding the phosphate group surrounding this molecule within the distance range 3.5-4.5 Å. Afterwards, provisional positions for water molecules were selected from a $2F_o - F_c$ electron-density map with peak density $>3\sigma$; calculated electron densities within 2.6-4.0 Å of the protein were accepted. Subsequent refinement steps with water molecules in these positions, interspersed by examination of the difference maps, validated the positions of 574 water molecules using the cutoff

Table 2

Refinement parameters of the final model.

Resolution range (Å)	8.0-1.8
σ cutoff applied	$2\sigma(F)$
No. of reflections	36820
<i>R</i> factor (all data included) (%)	21.1
$R_{\rm work}$ (90% data) (%)	20.7
$R_{\rm free}$ (%)	25.1
Total No. of non-H atoms	5152
No. of protein atoms	4398
No. of haem atoms	180
No. of water molecules	574
R.m.s. deviations from ideal geometry [†]	
Bond length (Å)	0.017
Bond angles (°)	3.0
Torsion angles (°)	20.6
Improper angles (°)	1.8
Average B values \dagger (Å ²)	
All atoms	34.8
All protein atoms	32.6
Main-chain atoms	31.4
Side-chain atoms	34.0
Water molecules	50.5

† From the X-PLOR program.

criteria of two hydrogen-bond donors/acceptors within 3.0 Å of the provisional positions and B < 60 Å². The *R* factor was reduced to 21.1% for 36 820 reflections with $F > 2\sigma(F)$ in the resolution range 8.0–1.8 Å in the final refinement. Details of the refinement parameters are given in Table 2.

3. Results and discussion

3.1. Quality of the structure

The final model comprises 5152 non-H atoms, representing two $\alpha\beta$ dimer molecules with 574 solvent molecules [treated as O(water) atoms]. Each pHb molecule consists of four polypeptides and four haem groups. The quality of the refinement of pHb has been determined using PROCHECK (Laskowski et al., 1993). In the Ramachandran plot, 99.6% residues are in the most favoured and allowed regions, none are in the disallowed regions and only two residues, Asp75 in the α_1 subunit and His77 in the β_1 subunit, are in the generously allowed regions. However, these residues clearly fit the electron-density map well. Other measures of quality applied by PROCHECK indicate that the refined parameters, including ω -angles, standard deviations, bad contacts, chirality, hydrogen-bond energies and side-chain torsion angles, are all inside the limits, except for one in a better region derived from well refined structures of comparable resolution. The theoretical estimate of coordinate errors using a Luzzati plot (Luzzati, 1952) is 0.15 Å. The r.m.s. deviations of bond lengths, angles, torsion angles and improper angles from their ideal values are 0.017 Å, 3.0, 20.6 and 1.8°, respectively. The average *B* factors are 32.63 Å^2 for the pHb molecules and 50.53 Å^2 for the water molecules. A representative electron-density map of the H-helix of the α_1 subunit is shown in Fig. 1. It is clearly obvious that this model fits exactly to the electron-density map owing to the higher resolution (1.8 Å). A comparison of the structural data between 2.8 Å (Katz *et al.*, 1994) and 1.8 Å resolution is shown in Table 3.

3.2. Secondary structures

The α -subunit of pHb has seven helices (A, B, C, E, F, G and H) and seven non-helical regions, whereas the β -subunit contains eight helical segments (A, B, C, D, E, F, G and H) and

1				5					10	۵				15					20
Val	Leu	Ser	Ala	419	Åsn	Ive	Ala	Asn	Val	lve	Ala	Ala	Trn	Glv	Ive	Val	Gly	Giv	Cln
NA1	NA2	A1	hia	hita	пор	A5	anu	450	vui	093	A10	hita	11p	019	L/3	A15	A16	AB1	B1
init.	1112			25		10	в		30					35			110	nor	40
Ala	Glv	Ala	His	Glv	Ala	Glu	Ala	Leu	Glu	Arg	Vet	Phe	Leu	Glv	Phe	Pro	Thr	Thr	Lvs
	,		B5					B10					B15		B17	C1			
С				45					50					55					60
Thr	Tyr	Phe	Pro	His	Phe	Asn	Leu	Ser	His	G1y	Ser	Asp	Gln	Val	Lys	Ala	His	Gly	G1n
C5		C7	CE1				CE5			CE8	E1	-			E5	(listal		
	Е			65					70					75					80
Lys	Val	Ala	Asp	Ala	Leu	Thr	Lys	Ala	Val	Gly	His	Leu	Asp	Asp	Leu	Pro	Gly	Aal	Leu
E10					E15					E20	E21	EF1	EF2	F1				F5	
	F			85					90					95					100
Ser	Ala	Leu	Ser	Asp	Leu	His	Ala	His	Lys	Leu	Arg	Val	Asp	Pro	Val	Asn	Phe	Lys	Leu
			F10		p	roximal	L	F15	FG1			FG4	Gl				G5		
			G	105					110					115					120
Leu	Ser	His	Cys	Leu	Leu	Val	Thr	Leu	Ala	Ala	His	His	Pro	Asp	Asp	Phe	Asn	Pro	Ser
		G10					G15					G20	GH1			GH4	H1		
				125			H		130					135					140
Val	His	Ala	Ser	Leu	Asp	Lys	Phe	Leu	Ala	Asn	Val	Ser	Thr	Val	Leu	Thr	Ser	Lys	Tyr
	H5					H10					H15					H20	H21	HC1	
Arg																			
HC3																			
									(1	1)									
										1									
										<i>,</i>									
1				5					10	A				15					20
l Val	His	Leu	Ser	5 Ala	Glu	Glu	Lys	Glu	lu Ala	A Val	Leu	Gly	Leu	15 Trp	G1y	Lys	Val	Asn	20 Val
l Val NA1	His	Leu NA3	Ser Al	5 Ala	Glu	Glu	Lys A5	Glu	lu Ala	A Val	Leu	Gly A10	Leu	15 Trp	G1y A14	Lys AB1	Val AB2	Asn B1	20 Val
l Val NA1	His	Leu NA3	Ser Al	5 Ala 25	Glu	Glu B	Lys A5	Glu	lu Ala 30	A Val	Leu	Gly Al0	Leu	15 Trp 35	G1y A14	Lys AB1	Val AB2	Asn B1	20 Val 40
1 Val NA1 Asp	His Glu	Leu NA3 Val	Ser A1 Gly	5 Ala 25 Gly	Glu Glu	Glu B Ala	Lys A5 Leu	Glu Gly	lu Ala 30 Arg	A Val Leu	Leu	Gly AlO Val	Leu Val	15 Trp 35 Tyr	G1y A14 Pro	Lys AB1 Trp	Val AB2 Thr	Asn B1 Gln	20 Val 40
l Val NA1 Asp	His Glu	Leu NA3 Val B5	Ser A1 Gly	5 Ala 25 Gly	Glu Glu	Glu B Ala	Lys A5 Leu B10	Glu Gly	lu Ala 30 Arg	A Val Leu	Leu Leu	Gly Al0 Val Bl5	Leu Val	15 Trp 35 Tyr B17	Gly Al4 Pro Cl	Lys AB1 Trp	Val AB2 Thr	Asn B1 Gln	20 Val 40 Arg C5
1 Val NA1 Asp C	Hís Glu	Leu NA3 Val B5	Ser A1 Gly	5 Ala 25 Gly 45	Glu Glu	Glu B Ala	Lys A5 Leu B10	Glu Gly	lu Ala 30 Arg 50	A Val Leu	Leu Leu	Gly Al0 Val Bl5 D	Leu Val	15 Trp 35 Tyr B17 55	Gly Al4 Pro Cl	Lys AB1 Trp	Val AB2 Thr	Asn B1 Gln	20 Val 40 Arg C5 60
1 Val NA1 Asp C Phe	His Glu Phe	Leu NA3 Val B5 Glu	Ser A1 Gly Ser	5 Ala 25 Gly 45 Phe	Glu Glu Gly	Glu B Ala Asp	Lys A5 Leu B10 Leu	Glu Gly Ser	lu Ala 30 Arg 50 Asn	A Val Leu Ala	Leu Leu Asp	Gly Alo Val Bl5 D Ala	Leu Val Val	15 Trp 35 Tyr B17 55 Met	Gly Al4 Pro Cl Gly	Lys AB1 Trp Asn	Val AB2 Thr Pro	Asn B1 G1n Lys	20 Val 40 Arg C5 60 Val
1 Val NA1 Asp C Phe	His Glu Phe	Leu NA3 Val B5 Glu	Ser A1 Gly Ser	5 A1a 25 G1y 45 Phe C10	Glu Glu Gly Cl1	Glu B Ala Asp CD1	Lys A5 Leu B10 Leu	Glu Gly Ser CD3	lu Ala 30 Arg 50 Asn Dl	A Val Leu Ala	Leu Leu Asp	Gly Al0 Val Bl5 D Ala	Leu Val Val D5	15 Trp 35 Tyr B17 55 Met	Gly A14 Pro C1 Gly D7	Lys AB1 Trp Asn E1	Val AB2 Thr Pro	Asn B1 G1n Lys	20 Val 40 Arg C5 60 Val
1 Val NA1 Asp C Phe	His Glu Phe	Leu NA3 Val B5 Glu	Ser A1 Gly Ser	5 Ala 25 Gly 45 Phe Cl0 65	Glu Glu Gly Cl1 E	Glu B Ala Asp CD1	Lys A5 Leu B10 Leu	Glu Gly Ser CD3	10 A1a 30 Arg 50 Asn D1 70	A Val Leu Ala	Leu Leu Asp	Gly Al0 Val Bl5 D Ala	Leu Val Val D5	15 Trp 35 Tyr B17 55 Met 75	Gly Al4 Pro Cl Gly D7	Lys AB1 Trp Asn E1	Val AB2 Thr Pro	Asn B1 Gln Lys	20 Val 40 Arg C5 60 Val 80
1 Val NA1 Asp C Phe Lys	His Glu Phe Ala	Leu NA3 Val B5 Glu His	Ser A1 Gly Ser Gly	5 Ala 25 Gly 45 Phe Cl0 65 Lys	Glu Glu Gly Cl1 E Lys	Glu B Ala Asp CD1 Val	Lys A5 Leu B10 Leu Leu	Glu Gly Ser CD3 Gln	10 A1a 30 Arg 50 Asn D1 70 Ser	A Val Leu Ala Phe	Leu Leu Asp	Gly Al0 Val Bl5 D Ala Asp	Leu Val Val D5 Gly	15 Trp 35 Tyr B17 55 Met 75 Leu	Gly Al4 Pro Cl Gly D7 Lys	Lys AB1 Trp Asn E1 His	Val AB2 Thr Pro Leu	Asn B1 Gin Lys Asp	20 Val 40 Arg C5 60 Val 80 Asn
l Val NA1 Asp C Phe Lys E5	His Glu Phe Ala	Leu NA3 Val B5 Glu His distal	Ser A1 Gly Ser Gly	5 A1a 25 G1y 45 Phe C10 65 Lys	Glu Glu Gly Cl1 E Lys E10	Glu B Ala Asp CD1 Val	Lys A5 Leu B10 Leu Leu	Glu Gly Ser CD3 Gln	10 A1a 30 Arg 50 Asn D1 70 Ser	A Val Leu Ala Phe E15	Leu Leu Asp Ser	Gly Al0 Val Bl5 D Ala Asp	Leu Val Val D5 Gly	15 Trp 35 Tyr B17 55 Met 75 Leu	Gly Al4 Pro Cl Gly D7 Lys E20	Lys AB1 Trp Asn E1 His EF1	Val AB2 Thr Pro Leu	Asn B1 Gin Lys Asp EF3	20 Val 40 Arg C5 60 Val 80 Asn F1
l Val NA1 C Phe E5	His Glu Phe Ala	Leu NA3 Va1 B5 Glu His distal	Ser A1 Gly Ser Gly	5 A1a 25 G1y 45 Phe C10 65 Lys 85	Glu Glu Gly Cl1 E Lys E10	Glu B Ala Asp CD1 Val F	Lys A5 Leu B10 Leu Leu	Glu Gly Ser CD3 Gln	10 A1a 30 Arg 50 Asn D1 70 Ser 90	A Val Leu Ala Phe E15	Leu Leu Asp Ser	Gly A10 Val B15 D A1a Asp	Leu Val Val D5 Gly	15 Trp 35 Tyr B17 55 Met 75 Leu 95	Gly Al4 Pro Cl Gly D7 Lys E20	Lys AB1 Trp Asn E1 His EF1	Val AB2 Thr Pro Leu	Asn B1 Gin Lys Asp EF3	20 Val 40 Arg C5 60 Val 80 Asn F1 100
1 Val NA1 Asp C Phe Lys E5 Leu	His Glu Phe Ala	Leu NA3 Val B5 Glu His distal Gly	Ser A1 Gly Ser Gly Thr	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe	Glu Glu Cl1 E Lys E10 Ala	Glu B Ala Asp CDl Val F Lys	Lys A5 Leu B10 Leu Leu	Glu Gly Ser CD3 Gln Ser	10 A1a 30 Arg 50 Asn D1 70 Ser 90 G1u	A Val Leu Ala Phe E15 Leu	Leu Leu Asp Ser His	Gly Al0 Va1 Bl5 D Ala Asp Cys	Leu Val Val D5 Gly Asp	15 Trp 35 Tyr B17 55 Met 75 Leu 95 G1n	Gly Al4 Pro Cl Gly D7 Lys E20 Leu	Lys AB1 Trp Asn E1 His EF1 His	Val AB2 Thr Pro Leu Val	Asn B1 G1n Lys EF3 Asp	20 Val 40 Arg C5 60 Val 80 Asn F1 100 Pro
l Val NA1 Asp C Phe E5 Leu	His Glu Phe Ala	Leu NA3 Val B5 Glu His distal Gly	Ser Gly Ser Gly Thr F5	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe	Glu Glu Gly Cl1 E Lys E10 Ala	Glu B Ala Asp CDl Val F Lys	Lys A5 Eeu B10 Leu Leu	Glu Gly Ser CD3 Gln Ser F10	10 Ala 30 Arg 50 Asn Dl 70 Ser 90 Glu	A Val Leu Ala Phe E15 Leu pl	Leu Leu Asp Ser His coximal	Gly Alo Val Bl5 D Ala Asp Cys	Leu Val D5 Gly F15	15 Trp 35 Tyr B17 55 Met 75 Leu 95 G1n FG1	Gly Al4 Pro Cl Gly D7 Lys E20 Leu	Lys AB1 Trp Asn E1 His EF1 His	Val AB2 Thr Pro Leu Val	Asn B1 Gin Lys EF3 Asp FG5	20 Val 40 Arg C5 60 Val 80 Asn F1 100 Pro G1
l Val NA1 Asp C Phe E5 Leu	His Glu Phe Ala Lys	Leu NA3 Val B5 Glu His distal Gly	Ser A1 Gly Ser Gly Thr F5	5 Ala 25 Gly 45 Phe Cl0 65 Lys 85 Phe 105	Glu Glu Gly Cl1 E Lys E10 Ala	Glu B Ala Asp CD1 Val F Lys	Lys A5 Leu B10 Leu Leu	Glu Gly Ser CD3 Gln Fl0 G	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110	A Val Leu Ala Phe E15 Leu pu	Leu Leu Asp Ser His coximal	Gly Al0 Val Bl5 D Ala Asp Cys	Leu Val D5 Gly F15	15 Trp 35 Tyr B17 55 Met 75 Leu 95 G1n FG1 115	Gly Al4 Pro Cl Gly D7 Lys E20 Leu	Lys AB1 Trp E1 His EF1 His	Val AB2 Thr Pro Leu Val	Asn B1 G1n Lys EF3 Asp FG5	20 Val 40 Arg C5 60 Val 80 Asn F1 100 Pro G1 120
l Val NA1 Asp C Phe E5 Leu Glu	His Glu Phe Ala Lys	Leu NA3 Val B5 Glu His distal Gly Phe	Ser A1 Gly Ser Gly Thr F5 Arg	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe 105 Leu	Glu Glu Cl1 E Lys El0 Ala	Glu B Ala Asp CD1 Val F Lys Gly	Lys A5 Leu Leu Leu Asn	Glu Gly Ser CD3 Gln F10 G Val	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110 I1e	A Val Leu Ala Phe E15 Leu pu Val	Leu Leu Asp Ser His coximal Val	Gly Al0 Val Bl5 D Ala Asp Cys	Leu Val D5 Gly F15 Leu	15 Trp 35 Tyr B17 55 Met 75 Leu 95 G1n FG1 115 A1a	Gly Al4 Pro Cl Gly D7 Lys E20 Leu Arg	Lys AB1 Trp E1 His EF1 His	Val AB2 Thr Pro Leu Val	Asn B1 G1n Lys EF3 Asp FG5 G1y	20 Yal 40 Arg C5 60 Yal 80 Asn F1 100 Pro G1 120 His
l Val NA1 C Phe E5 Leu Glu	His Glu Phe Ala Lys	Leu NA3 Val B5 Glu His distal Gly Phe	Ser A1 G1y Ser G1y Thr F5 Arg G5	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe 105 Leu	Glu Glu Cl1 E Lys El0 Ala Leu	Glu B Ala CD1 Val F Lys Gly	Lys A5 Eeu B10 Leu Leu Leu	Glu Gly Ser CD3 Gln Fl0 G Va1 Gl0	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110 Ile	A Val Leu Ala Phe E15 Leu pu Val	Leu Leu Asp Ser His roximal Val	Gly Al0 Val Bl5 D Ala Asp Cys	Leu Val D5 Gly F15 Leu G15	15 Trp 35 Tyr B17 55 Met 75 Leu 95 G1n FG1 115 A1a	Gly Al4 Pro Cl Gly D7 Lys E20 Leu Arg	Lys AB1 Trp E1 His EF1 His	Val AB2 Thr Pro Leu Val Leu	Asn B1 G1n Lys EF3 Asp FG5 G1y G20	20 Val 40 Arg C5 60 Val 80 80 F1 100 Pro G1 120 His GH1
l Val NA1 C Phe E5 Leu Glu	His Glu Phe Ala Lys	Leu NA3 Val B5 Glu His distal Gly Phe	Ser A1 G1y Ser G1y Thr F5 Arg G5	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe 105 Leu 125	Glu Glu Cl1 E Lys El0 Ala Leu	Glu B Ala CD1 Val F Lys Gly	Lys A5 Eeu B10 Leu Leu Leu	Glu Gly Ser CD3 Gln Fl0 G Va1 Gl0	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110 I1e 130	A Val Leu Ala El5 Leu pi Val	Leu Leu Asp Ser His roximal Ya1 H	Gly Al0 Val Bl5 D Ala Asp Cys Val	Leu Val D5 Gly F15 Leu G15	15 Trp 35 Tyr B17 55 Met 75 Leu 95 G1n FG1 115 A1a 135	Gly Al4 Pro Cl Gly D7 Lys E20 Leu Arg	Lys AB1 Trp E1 His EF1 His Arg	Va1 AB2 Thr Pro Leu Va1 Leu	Asn B1 Gin Lys EF3 Asp FG5 G1y G20	20 Val 40 Arg C5 60 Val 80 F1 100 Pro G1 120 His GH1 140
l Val NA1 Asp C Phe E5 Leu G1u Asp	His Glu Phe Ala Lys Asn	Leu NA3 Val B5 Glu His distal Gly Phe	Ser A1 Gly Ser Gly Thr F5 Arg G5 Pro	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe 105 Leu 125 Asp	Glu Gly Cl1 E Lys El0 Ala Leu Val	Glu B Ala Asp CD1 Val F Lys Gly Gln	Lys A5 Leu B10 Leu Leu Leu Asn	Glu Gly Ser CD3 Gln Fl0 G Va1 Gl0 Ala	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110 I1e 130 Phe	A Val Leu Ala E15 Leu pl Val Gln	Leu Leu Asp Ser His Ser Val H Lys	Gly Al0 Val Bl5 D Ala Asp Cys Val	Leu Val D5 Gly F15 Leu G15 Val	15 Trp 35 Tyr B17 55 Met 75 Leu 95 Gln FG1 115 Ala	Gly Al4 Pro Cl Gly D7 Lvs E20 Leu Arg Gly	Lys AB1 Trp E1 His EF1 His Arg Vai	Val AB2 Thr Pro Leu Val Leu	Asn B1 Cin Lys EF3 Asp FG5 Ciy G20 Asn	20 Ya1 40 Arg C5 60 Va1 80 Asn F1 100 Pro G1 120 His GH1 140 Ala
l Val NA1 Asp C Phe E5 Leu Glu Asp	His Glu Phe Ala Lys Asn Phe GH3	Leu NA3 Val B5 Glu His distal Gly Phe Asn Hi	Ser A1 Gly Ser Gly Thr F5 Arg G5 Pro	5 A1a 25 Gly 45 Phe C10 65 Lys 85 Phe 105 Leu 125 Asp	Glu Gly Cl1 E Lys El0 Ala Leu Ya1	Glu B Ala CDl Val F Lys Gly Gln H5	Lys A5 Leu B10 Leu Leu Leu Asn	Glu Gly Ser CD3 Gln Fl0 G Va1 Gl0 Ala	10 A1a 30 Arg 50 Asn D1 70 Ser 90 Glu 110 11e 130 Phe	A Val Leu Ala Phe E15 Leu pu Val G1n	Leu Leu Asp Ser His Froximal Val H Lys H10	Gly Al0 Val Bl5 D Ala Asp Cys Cys Val Val	Leu Ya1 D5 G1y F15 Leu G15 Ya1	15 Trp 35 Tyr B17 55 Met 75 Leu 95 Gln FGl 115 Ala 135 Ala	G1y A14 Pro C1 G1y D7 Lys E20 Leu Arg G1y	Lys AB1 Trp E1 His EF1 His F1 His Val H15	Val AB2 Thr Pro Leu Val Leu Ala	Asn B1 G1n Lys EF3 Asp FG5 G1y G20 Asn	20 Ya1 40 Arg C5 60 Va1 80 Asr F1 100 Pro G1 120 His GH1 140 A1a
l Val NA1 Asp C Phe E5 Leu Glu Asp	His Glu Phe Ala Lys Asn Phe GH3	Leu NA3 Val B5 Glu His distal Gly Phe Asn Hi	Ser A1 Gly Ser Gly Thr F5 Arg G5 Pro	5 A1a 25 Gly 45 Phe Cl0 65 Lys 85 Phe 105 Leu 125 Asp 145	Glu Gly Cl1 E Lys El0 Ala Leu Val	Glu B Ala CDl Val F Lys Gly Gln H5	Lys A5 Leu B10 Leu Leu Leu Asn	Glu Gly Ser CD3 Gln Fl0 G Val Gl0 Ala	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110 I1e 130 Phe	A Val Leu Ala Phe E15 Leu pi Val Gln	Leu Asp Ser His roximal Val H Lys H10	Gly Al0 Val Bl5 D Ala Asp Cys Val Val	Leu Val D5 Gly F15 Leu G15 Val	15 Trp 35 Tyr B17 55 Met 75 Leu 95 Gln 115 Ala 135 Ala	Gly Al4 Pro Cl Gly D7 Lys E20 Leu Arg	Lys AB1 Trp E1 His EF1 His Arg Va1 H15	Val AB2 Thr Pro Leu Val Leu	Asn B1 G1n Lys EF3 Asp FG5 G1y G20 Asn	20 Val 40 Arg C5 60 Val 80 Asr F1 100 Pro G1 120 His GH1 140 Ala
1 Val NA1 Asp C Phe E5 Leu Glu Asp	His Glu Phe Ala Lys Asn Phe GH3	Leu NA3 Val B5 Glu His distal Gly Phe Asn H1 His	Ser A1 Gly Ser Gly Thr F5 Arg G5 Pro	5 A1a 25 G1y 45 Phe C10 65 Lys 85 Phe 105 Leu 125 Asp 145 Tyr	Glu Glu Cll E Lys El0 Ala Leu Val	Glu B Ala Asp CD1 Val F Lys Gly Gln H5	Lys A5 Leu B10 Leu Leu Leu Asn	Glu Gly Ser CD3 Gln F10 G G Val Gl0 Ala	10 Ala 30 Arg 50 Asn D1 70 Ser 90 Glu 110 Ile 130 Phe	A Val Leu Ala Phe E15 Leu pi Val	Leu Leu Asp Ser His roximal Val H Lys H10	Gly Al0 Val Bl5 D Ala Asp Cys Val	Leu Val D5 Gly F15 Leu G15 Val	15 Trp 35 Tyr B17 55 Ket 75 Cleu 95 G1n FG1 115 A1a 135 A1a	Gly Al4 Pro Cl Gly D7 Lys E20 Leu Arg	Lys AB1 Trp E1 His EF1 His Va1 H15	Va1 AB2 Thr Pro Leu Va1 Leu Ala	Asn B1 C1n Lys EF3 Asp FG5 G1y G20 Asn	20 Val 40 Arg C5 60 Val 80 Asn F1 100 Pro G1 120 His GH1 140 Ala

Figure 2

Sequence alignment of porcine haemoglobin. (a) α -subunits, (b) β -subunits. The helical segments are indicated by boxes. The helix assignments in the refined structure differ slightly from those of Katz *et al.* (1994) as follows. In the α -subunit: helix A, residues 3–18; helix B, residues 20–36 (instead of 20–35); helix C, 37–43 (36–42); helix E, 52–72 (52–71); helix F, 75–89 (80–88); helix G, 94–113 (94–112); helix H, 118–138. In the β -subunit: helix A, residues 4–16 (instead of 4–18); helix B, residues 19–35 (19–34); helix C, 36–46 (35–41); helix D, 50–56; helix E, 57–76; helix F, 80–94 (85–93); helix G, 100–119 (99–117); helix H, 123–142 (123–143).

(b)

seven non-helical regions. This structure has several changes in the helix assignments from those of the 2.8 Å resolution structure; these results are shown in Fig. 2. In general, Pro, Asp, Glu and His residues are not included in the helical region, as the Pro residue is an imino acid and Asp, Glu and His residues carry charges which involve the hydrogen bond to water molecules. However, in the present structure all the above residues are included in the helical region, which also

> occurs in the structure of ferric soybean leghaemoglobin (Ellis et al., 1997). When this structure was superimposed on the 2.8 Å resolution structure (solved by Katz et al., 1994), the r.m.s. deviation was 0.59 Å for backbone atoms and 1.27 Å for sidechain atoms (Fig. 3). The structures of pHb (1.8 Å) and hHb are quite similar overall; the r.m.s. deviation of all backbone atoms between these two structures is 0.78 Å (Fig. 4), which is similar to the r.m.s. value between the pHb (2.8 Å) and hHb structures. This r.m.s. value is slightly higher than the theoretical value of 0.5 Å calculated from the sequencestructure relationship for homologous proteins (Chothia & Lesk, 1986).

> The plots of the least-squares superpositions of the α_1 subunit on the α_2 subunit and the β_1 subunit on the β_2 subunit reveal that the conformations of the α_1 and α_2 subunits and the β_1 and β_2 subunits are similar, except some terminal residues and few intermediate residues. In porcine haemoglobin, the α subunit superimposes upon its sister subunit with r.m.s. deviations of 2.03 Å for side-chain atoms and 0.83 Å for backbone atoms. There are six regions which have major structural differences in the α subunit: two residues in the amino terminal, two residues in the A helix (Val15 and Gly16), two residues in the CE loop (His50 and Gly51), two residues in the EF loop (Asp74 and Asp75), three residues (Asp115, Asp116 and Phe117) in the GH loop and three residues at the Cterminal; there is one minor difference at the end of the

Table 3

Comparison of structures at 2.8 and 1.8 Å resolution.

	2.8 Å structure	1.8 Å structure
Ramachandran plot (residues in disallowed region)	3	None
R.m.s. error in atomic coordinates (Luzzati, 1952) (Å)	~0.3	~ 0.15
No. of water molecules in final refinement	130	574
R _{merge}	0.087	0.058
Electron density around Asp21 β and Glu22 β of helix B	None	Clear
Electron-density map in H-helix of α_2 subunit	Many breaks	No breaks
Electron-density map in all four haem groups	Unclear	Clear
R.m.s. deviation of backbone between pHb and hHb (Å)	~ 0.8	~ 0.8
Superimposed α subunits (r.m.s. deviation)	1.8 Å for all atoms,	2.04 Å for all atoms,
	0.6 Å for backbone	0.83 Å for backbone
Superimposed β subunits (r.m.s. deviation)	1.3 Å for all atoms,	1.68 Å for all atoms,
	0.6 Å for backbone	0.53 Å for backbone
Sequence alignment	Many helix differences	(see Fig. 2)

C-helix and the beginning of the CE loop (Thr41–Asn47).

The β subunit superimposes upon its sister subunit with r.m.s. deviations of 1.68 and 0.53 Å for side-chain and backbone atoms, respectively. Here, three regions of the β subunit have minor structural differences (Ser44, Phe45 and Gly46 at the end of the C-helix; Leu48 and Ser49 in the CD loop; Gln95 and Leu96 in the FG loop) and six regions have major differences [six residues at the N-terminal; residue Leu14 in the A helix; residues Val20 and Asp21 in the B helix; three residues (Met55, Gly56 and Asn57) in the D helix; two residues at the end of the E helix and the beginning of the EF loop (Lys76 and His77) and two residues at the C-terminus].

Superposition of dimer $\alpha_1\beta_1$ on dimer $\alpha_2\beta_2$ results in r.m.s. deviations of 0.75 Å for the backbone atoms and 1.87 Å for the side-chain atoms.

3.3. Haem structures

In the crystal structure of oxy-hHb, all the atoms of each haem group are planar (Shaanan, 1983), but in deoxy-hHb

Figure 3

The r.m.s. deviation *versus* the residue number for the least-squares superposition of 2.8 Å resolution on 1.8 Å resolution structures. The five high r.m.s. deviation values indicated are the N-terminal and C-terminal of all four subunits. In the figure, 1 represents the first residue of the α_1 subunit, 142 represents the first residue of the β_1 subunit, 287 represents the first residue of the α_2 subunit and 428 represents the first residue of the β_2 subunit.

(Fermi et al., 1984) each haem iron lies ~ 0.4 Å out of the plane towards the proximal histidine ligand (His87 in the α subunit and His92 in the β subunit). In the present structure, all four Fe atoms lie in the haem planes within experimental error. Table 4 summarizes the histidine-Fe distances of three different haemoglobin structures. It is clear that the distal histidine distances are nearly equal in hHb and pHb structures, but the proximal histidine distance in the pHb structure is slightly longer $(\sim 0.7 \text{ Å})$ than that of the hHb structures. Similar structures are found in

aquomet horse haemoglobin (Ladner *et al.*, 1977). The models of the haem groups and the subunits with surrounding residues fit well into the electron-density map (Fig. 5).

When pHb was purified, the MetHb content was determined to be 2-3%. After lyophilization and storage, the

Figure 4

The plot of the least-squares superposition of the oxy-hHb on pHb structures: (a) $\alpha\beta$ of oxy-hHb and $\alpha_1\beta_1$ of pHb, (b) $\alpha\beta$ of oxy-hHb and $\alpha_2\beta_2$ of pHb. The high r.m.s. deviation values shows that both terminals of each subunit have large deviations. 1 represents the first residue of α -subunits and 142 the first residue of β subunits.

Table 4 Histidine–Fe distances in haemoglobin structure (Å).

His87 and His92 are the 'proximal histidine' in the α and β subunits, respectively. His58 and His63 are the 'distal histidine' in the α and β subunits, respectively.

Structure	α_1 subunit	eta_1 subunit	α_2 subunit	eta_2 subunit
pHb (1.8 Å)	His58, 4.1; His87, 2.7	His63, 4.4; His92, 2.8	His58, 4.5; His87, 2.9	His63, 4.0; His92, 2.8
pHb (2.8 Å)†	His58, 4.2; His87, 2.7	His63, 4.4; His92, 3.0	His58, 4.1; His87, 2.8	His63, 3.8; His92, 2.9
Oxy hHb‡	His58, 4.3; His87, 1.9	His63, 4.2; His92, 2.1	Same as for α_1 subunit	Same as for β_1 subunit
Deoxy hHb§	His58, 4.2; His87, 2.1	His63, 4.1; His92, 2.1	His58, 4.4; His87, 2.2	His63, 4.4; His92, 2.0

† Katz et al. (1994). ‡ Shaanan (1983). § Fermi et al. (1984).

MetHb content appeared to have increased. A 400-650 nm wavelength spectrum indicated that the MetHb content had increased to $\sim 10\%$. It should be taken into consideration that the crystallization conditions may also have some effect. When purified porcine Hb was characterized, porcine Hb exhibited a higher oxygen affinity $[P_{50} = 1.3 (1) \text{ kPa}]$ than human Hb $[P_{50} = 2.0 (1) \text{ kPa}]$ (Devenuto & Zegna, 1982). The Hill coefficient (n) of porcine Hb was calculated to be 2.16; that is, a little smaller than human Hb (2.48). The value is taken as a measure of the cooperative binding of oxygen by Hb. Accordingly, human Hb was found to have a more prominent haem-haem interaction than porcine Hb. In the $F_o - F_c$ maps of all four subunits, there is a clear electron density between the Fe atom and the distal histidine N atom in each region. This implies that there is a water molecule present. From this point of view, the present haemoglobin shows an aquomet form. This is evident because the refinement was carried out to 1.8 Å resolution in contrast to the 2.8 Å structure (Katz et al., 1994). The pHb is more likely to be in the R state for the quaternery structure in the present haemoglobin. The haem groups fit very well to the $2F_o - F_c$ map (Fig. 5). The atoms of each haem group in pHb make extensive van der Waals

Figure 5 A $2F_o - F_c$ map of the haem group of the α_2 subunit of pHb.

Figure 6

(a) The haem group with proximal histidine (His87), distal histidine (His58) and surrounding residues up to a radius of 4.0 Å from the α_1 subunit. (b) The heme group with proximal histidine (His92), distal histidine (His63) and surrounding residues up to a radius of 4.0 Å from the β_1 subunit.

research papers

contacts with neighbouring residues in the protein core (Fig. 6).

3.4. Complementarity relationship

The pHb tetramer binds together through a physical complementarity relationship. Charges on the surface of each monomer play an important role in pHb for complementary attraction, such that the entire tetramer remains stable after being isolated and purified. The electrostatic potential surfaces of the α_1 subunit of pHb calculated using the program GRASP (Nicholls et al., 1991; Nicholls, 1993) are consistent with those obtained by Katz et al. (1994), but exhibit sharper contrasts in charge distribution (Fig. 7). The surface-charge distributions of mutually attracted portions between monomers were calculated using the program INSIGHTII (Molecular Simulation Inc., San Diego, USA) and are shown in Fig. 8. A specific binding site usually exhibits a certain small region of acidic or basic amino acids to complement its potential receptor or target. However, Figs. 8 and 9 show no such definite region, but instead show nearly uniform 'island' distributions of positive (blue), negative (red) and neutral (white) surface charges. A tentative explanation for the uniform 'island' charge distributions is as follows.

Haemoglobin (Hb) is isolated from erythrocytes and is an important component of red blood cells. The cell membrane consists of double-chain amphiphile structures that encompass the spherical bilayer. The polar ends of the double-chain amphiphiles inside the blood-cell vesicle form a complementarity relationship with the 'island' surface of the Hb

(Fig. 9). Artificial blood is the final aim of our pHb structure determination. To artificially encapulate Hb with synthetic polymers or phospholipid vesicles is a great step towards the production of man-made blood. Stabilized phospholipid vesicle-encapsulated Hb (Tsuchida, 1994) indicates the successful complementarity relationship between Hb and the erythrocyte membrane.

Figure 7

Electrostatic potential surface of the α_1 subunit of pHb, which shows it is similar to that of Katz et al. (1994). The negative, positive and neutral charges are represented by red, blue and white colours, respectively.

Figure 8

The surface-charge distributions (using INSIGHTII) of (a) α_1 subunit, with 180° rotation to show the complementarity to (b) α_2 subunit.

Figure 9

The surface-charge distribution of the pHb tetramer (using *INSIGHTII*). Negative charge are represented as red, positive charge as blue and neutral charge as white. Bottom, $\alpha_1\beta_1$ subunits; top, $\alpha_2\beta_2$ subunits.

The authors thank Mr Shyh-Ming Chen for setting up the computing programs. They also thank the National Science Council, Republic of China, for support under grants NSC88-2112-M007-013, NSC88-2314-B007-001 and NSC88-2811-M007-0004. They are indebted to the National Center for High-Performance Computing for use of their resources.

References

- Ackers, G. K. & Smith, F. R. (1987). Annu. Rev. Biophys. Biophys. Chem. 16, 583–609.
- Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F. Jr, Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T. & Tasumi, M. (1977). J. Mol. Biol. 112, 535–542.
- Blow, D. M. (1958). Acta Cryst. 11, 125-126.
- Bolton, W. & Perutz, M. F. (1970). Nature (London), 228, 551-552.
- Borgstahl, G. E. O., Rogers, P. H. & Arnone, A. (1994*a*). *J. Mol. Biol.* **236**, 817–830.
- Borgstahl, G. E. O., Rogers, P. H. & Arnone, A. (1994b). J. Mol. Biol. 236, 831–843.
- Braden, B. C., Arents, G., Padlan, E. A. & Love, W. E. (1994). J. Mol. Biol. 238, 42–53.
- Braunitzer, F., Schrank, B., Stangl, A. & Scheithauer, U. (1978). Hoppe-Seyler's Z. Physiol. Chem. 359, 137–146.
- Brünger, A. T. (1992). X-PLOR Version 3.1. A System for X-ray Crystallography and NMR. New Haven, Connecticut: Yale University Press.
- Camardella, L., Caruso, C., Davino, R., Diprisco, G., Rutigliano, B., Tamburrini, M., Fermi, G. & Perutz, M. F. (1992). J. Mol. Biol. 224, 449–460.
- Chothia, C. & Lesk, A. M. (1986). EMBO J. 5, 823-826.
- Clement, S., Delcros, J. G., Basu, H. S., Quash, G., Marton, L. J. & Feuerstein, B. G. (1995). *Biochem. J.* 309, 787–791.

- Coghlan, D., Jones, G., Denton, K. A., Wilson, M. T., Chan, B., Harris, R., Woodrow, J. R. & Ogden, J. E. (1992). *Eur. J. Biochem.* 207, 931–936.
- Condon, P. J. & Royer, W. E. (1994). J. Biol. Chem. 269, 25259-25267.
- Devenuto, F. & Zegna, A. (1982). J. Surg. Res. 34, 205-212.
- Ellis, P. J., Appleby, C. A., Guss, J. M., Hunter, W. N., Ollis, D. L. & Freeman, H. C. (1997). *Acta Cryst.* D**53**, 302–310.
- Feola, M., Gonzalez, H., Canizaro, P. C., Bingham, D. & Periman, P. (1983). Surg. Gynecol. Obstet. 157, 399–408.
- Fermi, G., Perutz, M. F., Shaanan, B. & Fourme, R. (1984). J. Mol. Biol. 175, 159–174.
- Fermi, G., Perutz, M. F., Williamson, D., Stein, P. & Shih, D. T. B. (1992). J. Mol. Biol. 226, 883–888.
- Frier, J. A. & Perutz, M. F. (1977). J. Mol. Biol. 112, 97-112.
- Hsieh, Y. L., Lu, T. H., Lee, C. J. & Wang, B. C. (1992). The Fourth International Conference on Biophysics and Synchrotron Radiation, Tsukuba, Japan, p. A206.
- Ippolito, J. A., Alexander, R. S. & Christianson, D. W. (1990). J. Mol. Biol. 215, 457–471.
- Kan, P. & Lee, C. J. (1994). Artif. Cells Blood Substit. Immobil. Biotechnol. 22, 641–649.
- Katz, D. S., White, S. P., Huang, W., Kumar, R. & Christianson, D. W. (1994). J. Mol. Biol. 244, 541–553.
- Kavanaugh, J. S., Chafin, D. R., Arnone, A., Mozzarelli, A., Rivetti, C., Rossi, G. L., Kwiatkowski, L. D. & Noble, R. W. (1995). *J. Mol. Biol.* 248, 136–150.
- Kleinschmidt, T. & Sgouros, J. G. (1987). *Biol. Chem. Hoppe-Seyler*, **368**, 579–615.
- Kolatkar, P. R., Ernst, S. R., Hackert, M. L., Ogata, C. M., Hendrickson, W. A., Merritt, E. A. & Phizackerley, R. P. (1992). *Acta Cryst.* B48, 191–199.
- Ladner, R. C., Heidner, E. J. & Perutz, M. F. (1977). J. Mol. Biol. 114, 385–414.
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993). J. Appl. Cryst. 26, 283–291.
- Lee, C. J., Kan, P. & Chen, W. K. (1992). Artif. Cells Blood Substit. Immobil. Biotechnol. 20, 477–488.
- Luzzati, P. V. (1952). Acta Cryst. 5, 802-810.
- McPherson, A. (1982). *Preparation and Analysis of Protein Crystals*, 1st ed., pp 96–97. New York: John Wiley & Sons.
- Mitchell, D. T., Ernst, S. R. & Hackert, M. L. (1995). Acta Cryst. D51, 760–766.
- Mitchell, D. T., Ernst, S. R., Wu, W. X. & Hackert, M. L. (1995). *Acta Cryst.* D51, 647–653.
- Moulton, D. P., Joshi, A. A., Morris, A. & Mcdonald, M. J. (1994). Biochem. Biophys. Res. Commun. 204, 956–961.
- Nicholls, A. (1993). *GRASP: Graphical Representation and Analysis of Surface Properties.* Columbia University, New York, USA.
- Nicholls, A., Sharp, K. A. & Honig, B. (1991). Proteins Struct. Funct. Genet. 11, 281–296.
- Osawa, Y., Fellows, C. S., Meyer, C. A., Woods, A., Castoro, J. A., Cotter, R. J., Wilkins, C. L. & Highet, R. J. (1994). *J. Biol. Chem.* 269, 15481–15487.
- Paoli, M., Liddington, R., Tame, J., Wilkinson, A. & Dodson, G. (1996). J. Mol. Biol. 256, 775–792.
- Pechik, I., Ji, X. H., Fidelis, K., Karavitis, M., Moult, J., Brinigar, W. S., Fronticelli, C. & Gilliland, G. L. (1996). *Biochemistry*, 35, 1935–1945.
- Pellegrini, M., Giardina, B., Olianas, A., Sanna, M. T., Deiana, A. M., Salvadori, S., Diprisco, G., Tamburrini, M. & Corda, M. (1995). *Eur. J. Biochem.* 234, 431–436.
- Perutz, M. F. (1978). Sci. Am. 239, 91-125.
- Perutz, M. F., Fermi, G., Poyart, C., Pagnier, J. & Kister, J. (1993). J. Mol. Biol. 233, 536–545.
- Richard, V., Dodson, G. G. & Mauguen, Y. (1993). J. Mol. Biol. 233, 270–274.
- Rizzi, M., Wittenberg, J. B., Coda, A., Fasano, M., Ascenzi, P. & Bolognesi, M. (1994). J. Mol. Biol. 244, 86–99.

- Rossmann, M. G. & Blow, D. M. (1962). Acta Cryst. 15, 24-31.
- Royer, W. E. (1994). J. Mol. Biol. 235, 657-681.
- Royer, W. E., Heard, K. S., Harrington, D. J. & Chiancone, E. (1995). J. Mol. Biol. 253, 168–186.
- Ryan, T. M., Townes, T. M., Reilly, M. P., Asakura, T., Palmiter, R. D., Brinster, R. L. & Behringer, R. R. (1990). *Science*, **247**, 566–568.
- Shaanan, B. (1983). J. Mol. Biol. 171, 31–59.
- Silva, M. M., Rogers, P. H. & Arnone, A. (1992). J. Biol. Chem. 267, 17248–17256.
- Tsuchida, E. (1994). Artif. Cells Blood Substit. Immobil. Biotechnol. 22, 467–477.
- Vandegriff, K. D. & Winslow, R. M. (1991). Chem. Ind. 14, 497-504.

Waller, D. A. & Liddington, R. C. (1990). Acta Cryst. B46, 409-418.

- Wang, Y. C., Lee, C. J., Chen, W. K., Huang, C. I., Chen, W. F., Chen, G. J. & Lin, S. Z. (1996). Artif. Cells Blood Substit. Immobil. Biotechnol. 24, 35–42.
- Wireko, F. C. & Abraham, D. J. (1991). Proc. Natl Acad. Sci. USA, 88, 2209–2211.
- Yamauchi, K., Ochiai, T. & Usuki, I. (1992). *Biochim. Biophys. Acta*, **1171**, 81–87.
- Yang, J., Kloek, A. P., Goldberg, D. E. & Mathews, P. S. (1995). Proc. Natl Acad. Sci. USA, 92, 4224–4228.
- Zhang, J., Hua, Z. Q., Tame, J. R. H., Lu, G. Y., Zhang, R. J. & Gu, X. C. (1996). J. Mol. Biol. 255, 484–493.